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Numerical solution of the time-dependent compressible

Navier-Stokes equations in inlet regions

By L. E. OLSON

United States Army Air Mobility Research and Development Laboratory,

Ames Research Center

P. R. McGOWAN

Computer Sciences Corporation, Field Services Division, Mountain View,

California 94043

AND R. W. MacCORMACK

Ames Research Center, National Aeronautics and Space Administration,

Moffett Field, California 94035

This paper presents the results of a study to determine the effects of

compressibility on the viscous flow through channels that have straight,

parallel walls. Two channel configurations are considered, the flow between

two semi-infinite flat plates with uniform flow prescribed at the inlet plane

and a cascade of semi-infinite flat plates with uniform flow introduced

upstream. The flow field is modeled by using the time-dependent, compressible

Navier-Stokes equations. Time-dependent solutions are obtained by using an

explicit finite-difference technique which advances the pressure 
on near-field

subsonic boundaries such that accurate steady-state solutions are obtained.

The steady-state results at Reynolds numbers 20 and 150 are presented for Mach

numbers between 0.09 and 0.36 and compared with the incompressible solutions

of previous studies.
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1. Introduction

The flow in the inlet region of a straight channel brings with it many

of the features typical of viscous flow, and thus provides an interesting test

case for developing new analytical and numerical methods to be used in the

study of more practical flows. As a result, there is an extensive list of

references which address this problem, beginning with the original work of

Boussinesq (1891). Analytical studies by Schlichting (1960), Blankenship and

Chung (1967), Van Dyke (1970), Wilson (1971), and Kapila, Ludford, and

Olunloyo (1970) represent some of the more current publications where asymptotic

solutions for large Reynolds number have been constructed. With the exception

of the work by Blankenship and Cheng, all are restricted to incompressible

flow. Additional investigators have approached the problem numerically.

Among those using the incompressible Navier-Stokes equations are Gillis and

Brandt (1964), Wang and Longwell (1964), Freidman, Gillis, and Liron (1968),

Gosman (1969), and McDonald, Denny, Mills (1972), and Morihara and Cheng

(1973). Taylor and Ndefo (1970) solve the time-dependent incompressible

equations of motion. These works, and others, form the basis for a fundamental

understanding of incompressible inlet flows. To the authors' knowledge, how-

ever, no solutions have been obtained for this type of problem using the

unsteady, compressible Navier-Stokes equations.

Three basic models are generally considered in the literature: uniform

flow into a straight channel, irrotational flow into a straight channel, and

a cascade of semi-infinite flat plates immersed in a uniform flow. The infinite

cascade most accurately simulates a physically realizable flow, and is con-

sidered in this report, as is the uniform entry flow which Van Dyke (1970)

suggests may be attainable through the use of a variable'porosity mesh. In

flows such as these, it is important that particular attention be given to the
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boundary conditions on near-field permeable boundaries; that is, boundaries

where the flow either enters or leaves the computational region. This situa-

tion is relieved to some degree for incompressible flow, where it is possible

to eliminate the pressure from the governing equations by a transformation

into the stream function-vorticity plane. The resulting equations, when

coupled with the appropriate boundary conditions, can then be used to solve for

the velocity field without reference to any boundary condition on the pres-

sure. The pressure field can then be computed by integrating the momentum

equations with a priori knowledge of the pressure required at only one point

in the flow field.

For the compressible case, it is not possible to uncouple the pressure

and, as a result, a boundary condition on this variable is also required. In

addition, with unsteady calculations the pressure conditions become a function

of time, which must be generated as part of the solution. In the present

paper, a boundary condition which permits the pressure on an upstream subsonic

inflow boundary to become a function of time is combined with the explicit

finite-difference technique of MacCormack (1970) to solve the compressible

time-dependent Navier-Stokes equations. This boundary condition does not

require a priori knowledge of the static pressure on the inflow boundary,

although the analysis does assume that boundary conditions on the two velocity

components and density at this location are specified. Steady-state solutions

with low subsonic Mach numbers are compared with the incompressible results of

previous authors. Solutions at Mach numbers where compressibility effects

become important are also presented.

2. Differential equations and numerical method

The Navier-Stokes equations, in two dimensions, for a time-dependent

compressible flow may be written in vector form as
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In the above equations, p represents the static pressure, p is the density,

T is the static temperature, u is the component of velocity in the x-

direction, and v is the component of velocity in the y-direction.

The additional equations used to close the system are the equation of

state,
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p = pRT,

and the total energy per unit volume,

pe + [u2 + 2]

where e is the internal energy per unit mass, which is related to the static

temperature through

e = C T.
v

Sutherland's law, _ 3/2
T + 110 0 K T

u r
r T + 110K

was used for the viscosity, A -(2/3)p, and the Prandtl number was taken to

be 0.72. The ratio of specific heats, y, was set equal to 1.4.

The split predictor-corrector difference method devised by MacCormack

(1970) to solve equation (1) was used, and can be defined as follows:

[GA - Gn] (2a)

j1 13 Ay ij+1 j

Un+(1/2) 1 [n n+(1/2) At Gn+(1/2) Gn+(/2) (2b)
1j 2 ij Ij ij 1 ' _-1

Un+= n+(1/2) At n+(1/2) -Fn+(1/2) (3a)
1J ij Ax F i+Ij (

and

Un+l  _1 n+(1/2) + Un+ _ At i+1 - F (3b)
13 2 ij Ax ij-1

where

U. = U(iAx, iAy, nat),
ii

Fn. = F(U n j, iAx, iAy, nat),

F+1 = F(Un+1. , iAx, lay, nAt + At).
ii iJ



This essentially consists of two applications of a modified Euler predictor-

corrector pair. The first application, equations (2), ignores the x-

derivatives in equation (1); whereas, the second ignores the y-derivatives.

This numerical computation uses data obtained from data in the t = tn plane,

see figure 1, to advance the solution at xi, Yi by an amount At.

If L y(At) is defined as an operator which represents the operations

performed in equations (2) and Lx(At) is the corresponding operator for equa-

tions (3), then the solution of equation (1) can be advanced in time, with

second-order accuracy, by the following sequence:

LU+2 = Ly(At) Lx(At)iLx"(At)Ly(At) (4)

Equation (4) holds for Ay = Ax; however, significant advantages result

when a modification of this technique is used in problems in which it is

desirable to have Ay Ax. In this case, larger time steps and closer match-

ing of the numerical and physical domains of dependence is achieved as follows:

The solution of equation (1) is advanced by an amount Atx with

U 1 = M/2Ly(Aty)Lx (Atx) M/2Ly(Aty)Uj

where M is the smallest even integer greater than Atx/Aty, and TM/2 denotes

M/2 products of the Ly operator. For the unequal spatial step sizes,

stability considerations require that

Atx <Ax
x u+c

and

At < Ay
y- V +C'

where u and c are the local velocity and speed of sound, respectively.

A rectangular grid which grows geometrically in both the x- and the

y-direction is shown in figure 1, along with the coordinate system. This Fig. 1
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arrangement is ideally suited to the inlet flow problem, which requires a fine

mesh in the immediate vicinity of the leading edge but permits a more coarse

mesh in the vicinity of the centerline, downstream, and upstream. For the

geometric grid, the mesh spacing is given by

Axi = (1 + nx)AXi_ 1 = (1 + x)i- Ax,

and

Ayi = (1 + n )Ayj_ 1 = (1 + n ) Ay.

In general, nx was not equal to ny and, in the case of the cascade, the nx

used upstream of the leading edge was not necessarily equal to the nx used

to the right of the leading edge.

The Ax and Ay required for good spatial resolution is estimated by

assuming that significant terms in the differential equations are of the same

order of magnitude. Consider the transport term a(pvu)/ay and the viscous

stress term D[p(9u/y)]/ay in the x-momentum equation. Linerization and

differencing gives, for nx = ny = 0,

pu [u -u ] and [u -2u.. + u. .
2Ay ij+1 -uij- (Ay) 2  ij+ 1) -1

If these terms are of the same order of magnitude, then one would expect the

coefficients also to be of the same order of magnitude; that is,

pv/2Ay ~ u/2(Ay)2 . This condition, when expressed in terms of mesh Reynolds

number, ReAy, implies

ReAy = PA 2,

or, upon introducing the Reynolds number, Re = 2hu /v.,

2u

h v Re'

where h is the half-channel width. The results of Gillis and Brandt (1964)
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indicate that, for a Reynolds number of 200, Iv/ujI < 1/6, which indicates

Ay/h Z 0.08, is sufficient for good spatial resolution at Reynolds numbers

at or below 200.

Equating linearized and differenced terms .(pu2)/ax and a(pvu)/au from

the y-momentum equations yields Ax = (u/v)Ay or, again using the results of

Gillis and Brandt, Ax ~ 6Ay. In the present calculations, Ay/h was 0.036 or

less and Ax was fixed at 2Ay, both of which are conservative according to

the above estimates for good spatial resolution.

With Ax determined, the number of mesh points to be used from the inlet

plane to the downstream exit plane (N) specified, and the distance from the

inlet plane to the exit plane (x e) specified, the geometric scale factor to

the right of the inlet plane (nx) is computed using the equation

x Ax( + 1 ) -1

h h n 2

The scale factors to the left of the inlet and in the y-direction are computed

using similar formulae. These equations center the smallest cell in the

numerical grid (which has dimensions Ax, Ay) on the leading edge.

3. Initial conditions, boundary conditions, and convergence criteria

The initial conditions are essentially that of a uniform flow, which in

terms of the present notation, is u = u , p = p, p = p., and T = T for

all x and y. The posing of boundary conditions in any numerical calculation

requires particular attention. This is particularly true in subsonic flow.

As noted by Moretti (1969), the boundary of a subsonic computational region with

a permeable boundary on which flow variables are held constant is an ill-

posed problem. Certainly this is the case for the time-dependent inlet flow.

Perturbation waves created in the interior of the flow accumulate at this type
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of boundary. Moretti observed this characteristic in Laval nozzle computa-

tions, and similar behavior has been observed in the present calculations for

the case of the uniform inlet when'all flow variables at the inlet plane were

held fixed. Thus, it is necessary to permit the boundary conditions to

become functions of time without altering the fundamental character of the

problem being studied.

First, consider the boundary conditions for the case of uniform entry.

The boundary conditions at the inlet plane specify uniform flow and constant

density, which in the present notation is uij = u , v.. = 0, and pij = p..
1Ji = a ij m

The numerical computation of Gillis and Brandt (1964) and the analytic work

of Van Dyke (1970) indicate that a pressure gradient across the channel inlet

plane is required to maintain the prescribed uniform velocity profiles. There-

fore, the pressure distribution across the face of the inlet is permitted to

adjust by linear extrapolation from the first two interior points to the inlet

boundary after each time step. This boundary condition is then written as

Ax1n+l n n n
Pij = P2j - (P3j 2j ) x2

The inlet temperature distribution is advanced by using the equation of state.

For the boundary conditions at the plate, a fictitious row of cells

below the plate were used, together with the reflection technique on u and v.

The pressure in the fictitious cell was updated during each time step by

using, as the compatibility condition, the y-momentum equation evaluated at the

surface

2p 1 a2u + 3v aT 4 p32v
ay 3 axay 2T y y 3 Ay2

For an adiabatic wall, the complete set of boundary conditions then becomes

Uil = -ui2, Vil = -vi2, Til = T.i2

and
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2uw ui2 - ui_12 4 [ rvi3 - vi2 2vi 2]

Pil = i2 3 Ax.i 3 AY2 A

Symmetry boundary conditions were applied on the channel centerline by using

mirror cells on either side of the channel centerline.

The downstream boundary values on u, v, and p were updated by linear

extrapolation from the two upstream points. This is equivalent to forcing

2u/aX2 = @2V/DX2 = a2p/ax 2 = 0. The pressure on this boundary, which was

initially uniform, was held fixed at the initial value. The equation of state

was again used to update the temperature.

The distance to the parabolic regime as determined for incompressible inlet

flow by Gillis and Brandt (1964) was used to determine the approximate location

of the downstream boundary. The basic requirement is that the downstream

boundary be sufficiently far removed from the inlet to permit the pressure

distribution to become essentially uniform across the channel and, therefore,

consistent with the specified downstream boundary condition of uniform pressure

at the exit plane. In all of the cases presented in this paper, including

both the uniform inlet and cascade calculations, the normalized static pressure

distribution, p/p u2, at the first interior plane upstream of the downstream

boundary, was uniform to within 1% for the converged solutions.

The boundary conditions for the cascade are the same as those used for

the uniform inlet flow, except ahead of the plate where symmetry requires that

v = au/ay = p/ay = ap/ay = 0 on the lower boundary. The distance from the

cascade inlet to the upstream boundary was located by specifying that the con-

verged pressure distribution (p/p u2) over the upstream plane be uniform to

within 0.5%.

Equation (1), together with the appropriate boundary condition, was

solved for the uniform inlet flow and the cascade at various combinations of



Reynolds number and Mach number, M., ranging from 20 to 150 and 0.089 to

0.364, respectively. For both the inlet and the cascade, convergence to the

steady-state solution was not monotonic. Rather, exponentially damped sinu-

soidal oscillations were observed. Disturbances created in the startup process

are at least partially reflected at the channel inlet plane and the downstream

exit plane and as a result persist in the interior of the flow field until

damped by transmission at the boundaries, viscous dissipation, and heat-

conduction effects. Although the somewhat arbitrary method used to update the

pressure on the upstream boundary precludes precise comparison, the observed

frequencies for both the uniform inlet and cascade flows are in rough agree-

ment with the fundamental resonant frequencies of channels which have one end

closed the other end open to the atmosphere (Malecki 1969). In addition,

the dependence of the rate of dissipation on frequency showed approximate

agreement with the analysis of Malecki, which indicates that radiation,

viscous dissipation, and dissipation due to heat condution from a closed-end

channel are proportional to the square of the resonant frequency. The solu-

tions with Re = 150 were assumed to be converged to the steady-state solution

when Ap/p u2 < 0.02, where Ap is defined as the amplitude of the pressure

fluctuation on the flow centerline at the upstream boundary. The Re = 20

solutions, which converged considerably faster than the Re = 150 cases, were

assumed converged when Ap/p u < 0.005.

The resulting steady-state solutions were checked for conservation of

mass at each streamwise station by using the integral form of the continuity

equation. As a percentage of the mass inflow at the upstream boundary, the

mass loss ranged from 0.2% for the inlet and cascade flow at Re = 150 and

Re = 0.089 to 2.3% for the inlet flow with Re = 20 and M = 0.364.
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4. Results and Discussion

For the purpose of comparison with the solutions of Gillis and Brandt

(1964), the u and v velocity profiles for the uniform inlet with Re = 20

and M = 0.089 are shown in figures 2 and 3. At this low Mach number, solu- gs. 2&3

tions to the incompressible equations of motion provide a reasonable basis for

comparison with the inherently compressible results of the present method.

The agreement between the two methods is excellent. The physical interpreta-

tion of the velocity maxima observed near the inlet plane is discussed by

Gillis and Brandt (1964). The u-velocity profile attains the well-known

parabolic shape for an incompressible Poiseuille flow at an x/h of approxi-

mately 2.5 (not shown) and maintains that shape to the downstream exit plane

located at x/h = 11.0. The centerline velocity also reaches the incompressible

asymptotic value of 1.5 uo at x/h = 2.5. The gradual increase in the center-

line velocity for x/h = 2.5 is due to the slight compressibility effect which

is present even at this low Mach number. As will be shown, at higher inlet

Mach numbers, this rate of increase in the centerline velocity is strongly

effected and the classical parabolic shape is no longer obtained.

Figure 4 compares the excess pressure drop at the inlet plane with the ig. 4

results of Gillis and Brandt (1964). The excess pressure drop is the pressure

drop beyond that which would be present if the flow were a fully developed

Poiseuille flow starting at the inlet plane, and is caused by the viscous

interaction in the vicinity of the inlet plane. Mathematically, the excess

pressure drop at any point (x*, y) is defined by

limP(X* y) - xap(x, y)

2
POu0
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In the present study, ap(x, y)/Dx was evaluated numerically by using the

specified pressure at the exit plane and the pressure at an upstream point.

As with the velocity distribution, the agreement between the two methods is

excellent.

The centerline velocity distributions for the case of the uniform inlet

at M = 0.089 and Re = 150 is compared to the incompressible numerical solu-

tion of Gillis and Brandt (1964) and McDonald, Denny, and Mills (1972), and

the analytical results of Van Dyke (1970) in figure 5. Figure 6 makes similar igs.

comparisons with the analytical solutions obtained by Van Dyke (1970) and the

numerical results of Wang and Longwell (1964) (numerical solution of incom-

pressible Navier-Stokes equations) for a cascade with Re = 150 and Mo = 0.089.

There is good agreement between the various numerical solutions, and the

slight deviation of the analytical results for the uniform inlet flow is

discussed by Van Dyke (1970).

Velocity and static pressure distribution on the centerline and at the

wall of a cascade with a Reynolds number of 20 and a Mach number of 0.36 is

presented in figure 7. The behavior of the centerline velocity in this case < ig. 7

is dramatically different from that which is observed for the incompressible

case. The asymptotic value of 1.5 um is no longer approached; rather, the

strong favorable pressure gradient that is required to maintain the flow also

forces a reduction in the gas density. Conservation of mass, in turn,

requires that the flow continuously accelerate. As a result, it is not possi-

ble to approach the asymptotic Poiseuille type of flow when compressibility

effects are present. The flow approaching the leading edge of the plate

decelerates monotonically with the pressure approaching, but not quite reach-

ing, the isentropic stagnation pressure at the leading edge. It is interesting

to note that the pressure on the centerline in the vicinity of the inlet plane
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is lower on the channel centerline than at y/h = 0, but then drops below

the wall pressure inside the channel before proceeding toward a condition of

uniform pressure, which is reached at an x/h of approximately 2. This

behavior is similar in character to the inviscid flow around the forward por-

tion of an airfoil, where the stagnation line static pressure first increases

as the flow approaches the stagnation point and then drops below the free-

stream pressure as the flow accelerates away from the leading edge. In the

present case, the behavior is attributed to the very rapid rate of growth of

the boundary layer near the leading edge (Gillis and Brandt 1964), which

causes the flow near the plane of the plate to decelerate as the leading edge

is approached. This is followed by a gradual reduction in the u-component

of velocity as the flow turns to become parallel to the plate, which requires

the negative normal pressure gradient observed downstream of the leading edge.

The centerline and wall temperature distributions for this case are

shown in figure 8. Although the centerline temperature distribution falls Fig. 8

monotonically due to the expansion process, the temperature at y/h = 0.0

first increases, recovering to approximately 60% of the isentropic stagnation

temperature, before proceeding to fall as the flow moves down the channel. The

difference between the adiabatic wall temperature and the centerline tempera-

ture increases continuously, as might be expected, due to the increasing local

Mach number.

The effect of the location of the exit plane is also shown in figure 8,

where temperature distributions are shown with the downstream boundary at

x/h = 2.67 and 3.25. Where no discernable difference exists between the two

cases, the xe/h = 2.67 results are not plotted. Only the data in the immedi-

ate vicinity of the downstream boundary is effected by the boundary location.

The velocity and pressure distributions for these two cases were, for the



scale of figure 7, essentially identical, including the data in the vicinity

of the exit plane.

Also, for the cascade with Re = 20 and Mm = 0.364, the u/um and v/um

profiles are presented in figures 9 and 10, respectively. The u-velocity igs.
6 10

profile at the exit plane (xe/h = 3.25) differs significantly from the

classical parabolic profile, in contrast with the incompressible case where

the velocity profile is within 1% of being parabolic at x/h = 2.25 (Gillis

and Brandt 1964). The local centerline Mach number at the exit plane is 0.94.

Attempts to move this boundary further downstream result in numerical

instabilities of the type described below.

Figure 11 summarizes the results of solutions obtained for a uniform < g. 11

inlet flow at Re = 20 and several Mach numbers. The pronounced effect of

increasing Mach number on the flow acceleration is apparent. This compressi-

bility effect is, in fact, present even at the lowest Mach number of 0.089

where the asymptotic incompressible value for the centerline velocity is sur-

passed at an x/h of 2.5. At the higher inlet Mach numbers, sonic velocities

are approached within a few channel widths. It is necessary that the down-

stream boundary be kept upstream of the point where the flow attempts to go

supersonic. If the downstream boundary is moved beyond this sonic point,

numerical instability is encountered. This behavior is consistent with the

fact that subsonic, viscous, adiabatic flow through a constant area duct can

attain, at most, sonic velocity (see for example Shapiro 1953). To increase

the duct length beyond this sonic point results in a "choked" flow which moves

the sonic point downstream to the duct exit. To achieve this, a reduction in

the mass flow rate is necessary, which is not permitted by the present

formulation of the boundary conditions at the inlet plane.
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5. Summary

The compressible viscous flow in the inlet region of a straight channel

and the flow into a cascade of semi-infinite flat plates has been studied at

Reynolds number of 20 and 150 and at Mach numbers ranging from 0.089 to 0.364.

The numerical method of MacCormack (1970) is used to solve the governing

Navier-Stokes equations utilizing a nonuniform rectangular grid. Sufficient

boundary conditions for the solution of the governing equations are prescribed

by including the effect of near field subsonic permeable boundaries. These

boundary conditions are well-posed in the sense that the pressure on the

upstream in-flow boundary is advanced in time such that accurate steady-state

solutions are obtained. No attempt is made to relate the time-dependent

part of the solutions to any particular physical unsteady flow. To do this for

subsonic flow requires knowledge of conditions outside the permeable boundary.

Comparison of the low Mach number uniform inlet and cascade results

with the incompressible solutions of previous authors shows excellent agree-

ment and verifies the consistency of the time-dependent boundary conditions on

the permeable boundaries and the utility of the nonuniform grid. Results of

computations at the higher Mach numbers for both the uniform inlet and the

cascade are presented. The extreme sensitivity of the inlet region flow to

increasing inlet Mach number is demonstrated by a rapid acceleration of the

flow toward the sonic velocity. Solutions are presented in sufficient detail

to provide basic test cases for future analytical or numerical methods which

include the effect of compressibility on viscous flows in inlet regions.
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Figure Captions

FIGURE 1. Coordinate system, numerical grid, and boundary conditions.

FIGURE 2. Streamwise velocity profiles for uniform inlet at Re = 20, M. = 0.089,

, full numerical (present method);O, full numerical (Gillis and Brandt

1964); x, parabolic profile.

FIGURE 3. Transverse velocity profiles for uniform inlet at Re = 20, Mo = 0.089.

, present method; 0, Gillis and Brandt (1964).

FIGURE 4. Excess pressure drop at inlet plane for uniform inlet at Re = 20

and Mm = 0.084. 0, present method; A, Gillis and Brandt (1964).

FIGURE 5. Centerline velocity for uniform inlet at Re = 150. L, present

method (M. = 0.089); , Van Dyke (1970); 0, Gillis and Brandt (1964);

-------- , McDonald, Denny, and Mills (1972).

FIGURE 6. Centerline velocity for cascade at Re = 150. 0, present method

M = 0.089; , Wang and Longwell (1964) M = 0; - - -, Van Dyke

(1970) M_ = 0.

FIGURE 7. Cascade pressure and streamwise velocity at Re = 20 and Mm = 0.364.

L , centerline velocity; A, stagnation line velocity; 0, centerline static

pressure; 0 , stagnation line and wall static pressure; r, isentropic stagna-

tion pressure.

FIGURE 8. Cascade centerline and wall static temperature distributions at

Re = 20 and M = 0.364.0 , adiabatic wall temperature (x e/h = 3.25); <,

adiabatic wall temperature (xe/h = 2.67); l, centerline temperature (xe/h =

3.25); A, centerline temperature (xe/h = 2.67).

FIGURE 9. Streamwise velocity profiles for cascade at Re = 20 and M_ = 0.364.

, present method; -------- , parabolic profile.

FIGURE 10. Transverse velocity profiles for cascade at Re = 20 and Mo = 0.364.

FIGURE 11. Centerline velocity distributions for uniform inlet with Re = 20.

, Mo = 0.089; --------, M = 0.196; - - , M = 0.288;

M = 0.379.
00



-Ar

lu

lu 4r-

w7,1

oe-

lu



I I I

0 .5 1.0

u/Uo

VELOCITY SCALE

0000 0 0 0

.8 X

.6 x

y/h
.42

0 .2 .4 .6 .8 1.0 11 12 13 14 15

x/h
Fig. 2



0 .1 .2 .3

V/U,

VELOCITY SCALE

1.0

.8

.6
y/h

.4

.2

0 .2 .4 .6 .8 1.0 1.2 1.4 3.2 3.4 3.6
x/h

Fig. 3



1.0-0

.8 -o

0

.6- o

y/h 0
O

.4- 0
0

.2 - Q

I I

0 I 2 3
EXCESS PRESSURE DROP

Fig. 4



1.5 -

1.3

U/Uco
1.2

I.I

0 I 2 3 4 5 6

x/h

Fig. 5



1.5

1.4

1.3

U/Uao

1.2

I.1

1.0
2 0 2 4 6 8 I0 12 13

x/h

Fig. 6



_ I

-2

-3
-5 -4 -3 -2 -1 (

x/h

Fig. 7



.08 -

.04

T -Too

TO
-. 04

-. 08-

-. 12 -

-.1 6
-5 -4 -3 -2 -1 0 2 3 4

x/h

Fig. 8



O .5 1.0
u/uO

VELOCITY SCALE

" 00 0 0 0 .

1.0

.8

.6
y/h

.4

.2

0 .2 .4 .6 .8 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6
x/h

Fig. 9



I I I
0 .2 .4

V/Uco

VELOCITY SCALE

,0 ,0,0 0 0 ,b" ("

1.0

.8-

.6
y/h

.4 -

.2

-. 6 -. 4 -. 2 0 .2 .4 .6 .8 3.2 3.4
x/h

Fig. 10



2.2

2.0

.6 /

2.8 - / /'/

1.2 .

1.0
0 2 3 4

x/h

Fig. 11




